
 Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP12(2009)044

(http://iopscience.iop.org/1126-6708/2009/12/044)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:19

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/12
http://iopscience.iop.org/1126-6708/2009/12/044/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
2
(
2
0
0
9
)
0
4
4

Published by IOP Publishing for SISSA

Received: October 19, 2009

Accepted: November 21, 2009

Published: December 14, 2009

Non-holomorphic multi-matrix gauge invariant

operators based on Brauer algebra

Yusuke Kimura

Centre for Research in String Theory, Department of Physics,

Queen Mary University of London,

Mile End Road, London E1 4NS U.K.

E-mail: y.kimura@qmul.ac.uk

Abstract: We present an orthogonal basis of gauge invariant operators constructed from

some complex matrices for the free matrix field, where operators are expressed with the

help of Brauer algebra. This is a generalisation of our previous work for a signle complex

matrix. We also discuss the matrix quantum mechanics relevant to N = 4 SYM on S3×R.

A commuting set of conserved operators whose eigenstates are given by the orthogonal

basis is shown by using enhanced symmetries at zero coupling.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, D-branes

c© SISSA 2009 doi:10.1088/1126-6708/2009/12/044

mailto:y.kimura@qmul.ac.uk
http://dx.doi.org/10.1088/1126-6708/2009/12/044


J
H
E
P
1
2
(
2
0
0
9
)
0
4
4

Contents

1 Introduction 1

2 Diagonal basis of gauge invariant operators built from X and X
† based

on Brauer algebra: review 3

3 Diagonal basis of non-holomorphic multi-matrix gauge invariant opera-

tors 6

3.1 Gauge covariant operators in representation basis 6

3.2 Gauge invariant operators in representation basis 8

3.3 Operator in the k = 0 representation of γ 9

4 Examples 10

4.1 m = 1, n = 1 10

4.2 m = 2, n = 1 12

5 Quantum mechanics and conserved charges measuring representation la-

bels 14

6 Discussions 18

A One-loop dilatation operator 19

B Proof of the diagonal two-point function 21

B.1 Two-point function for the covariant operator 21

B.2 Two-point function for the gauge invariant operator 21

B.3 A formula 23

C Two actions of the symmetric group 23

1 Introduction

According to the AdS/CFT correspondence, gauge invariant operators correspond to physi-

cal states in string theory and, moreover, the spectrum of states is encoded in the anomalous

dimension of gauge invariant operators. Of primary interest is to establish this correspon-

dence exactly and to know how the space-time physics can be read from correlators of

gauge invariant operators.

The half-BPS states have attracted much attention because of some observations. The

chiral primary sector is described by the complex matrix model which can be obtained by

the dimensional reduction from the original N = 4 SYM, which leads to the free fermion
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description of this system [4–9]. The chiral primary operators describe KK gravitons and

giant gravitons [4, 10–12], whose two-point functions are diagonal [5]. One finds that a

particular linear combination of single traces and multi-traces corresponds a single giant

graviton or a set of giant gravitons, whose information is offered by Young tableau [5].

A Young diagram plays the role of organising the multi-trace structure of this sector and

completely determines the space-time physics.

A next question along this line is how we can expand the chiral primary sector to more

general classes of gauge invariant operators. It is interesting to ask how group theory can

be utilised to organise gauge invariant operators to make the connection to string theory

more manifest. In [1], the chiral primary operator was extended to include the complex

conjugation of a complex matrix, and an orthogonal complete set was constructed using

the free field correlator. Because replacing X by X† in chiral primary operators means to

change the sign of angular momentum and the coupling to the background field in the dual

string side, this sector would describe physics containing giant gravitons and anti-giant

gravitons. If the interactions are taken into account properly, one may expect to see the

instability originated from tachyons appearing between those branes.

A mathematical new element in [1] was to use Brauer algebra to organise the multi-

trace structure of gauge invariant operators constructed from X and X†. This is a gen-

eralisation of the fact that the symmetric group played a role to organise the multi-trace

structure of the chiral primary sector. The Brauer algebra contains the contraction in

addition to the group algebra of the symmetric group, which manages gauge invariant

operators involving X and X† in a trace. The complete set constructed in [1] has more

group theoretic labels than the chiral primary sector, which is reflected in the fact that the

operators were conjectured to describe a system of branes and anti-branes. Other studies

of diagonalising the two-point functions in the free field limit have been reported in [13–17].

In this paper, we continue this line to explore non-holomorphic gauge invariant opera-

tors built from some complex matrices. We work out the construction of diagonal two-point

functions at the free level of the matrix field theory and see what kind of group theoretic

structure show up.

Here are the outline of this paper. The construction of the orthogonal set of gauge

invariant operators is reviewed in section 2 for the chiral primary sector and the non-

holomorphic extension. In section 3, we shall give the construction of an orthogonal set for

the non-holomorphic multi-matrix sector. Section 4 is given to show some examples of our

operator. The simplest sector contains the Konishi operator. In section 5, the multi-matrix

quantum mechanics is discussed. In our previous paper [3], we have introduced the concept

of enhanced symmetries at the free level and have given some operators commuting with

the Hamiltonian, which were exploited to measure the spectrum of orthogonal bases. It

will be shown how the orthogonal gauge invariant operators constructed in this paper are

characterised by conserved charges based on the enhanced symmetries. In section 6, we

discuss some future problems. Some detailed calculations are shown in appendices.

– 2 –
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2 Diagonal basis of gauge invariant operators built from X and X
† based

on Brauer algebra: review

In this section, we review the chiral primary sector and the Brauer basis for X and X†

sector.

Operators corresponding to the highest weight in the half-BPS sector are given by

holomorphic gauge invariant operators made from a complex matrix X. The diagonal basis

of operators constructed from n matrices is labelled by a Young diagram R with n boxes [5].

We shall review the construction of this basis from a group theoretical point of view.

An N × N matrix X can be viewed as an endomorphism acting on an N -dimensional

vector space V , i.e. X: V → V . The tensor product X⊗n acts on V ⊗n. It is useful to

introduce the symmetric group Sn as a tool to organise both single trace and multi-trace.

We let elements σ of the symmetric group Sn act on V ⊗n as the permutations of n vector

spaces V . One easily finds that any gauge invariant operator constructed from n X’s can

be expressed as trn(σX⊗n) = Xi1
iσ(1)

· · ·Xin
iσ(n)

where the trace trn is taken in V ⊗n. It is

noted that trn(hσh−1X⊗n) also gives the same gauge invariant operator for any h ∈ Sn,

which means the conjugacy classes of Sn classify gauge invariant operators.

It is convenient to start with the following Schur-Weyl duality to introduce the repre-

sentation basis,

V ⊗n =
⊕

R

V
U(N)
R ⊗ V Sn

R . (2.1)

This comes from the fact that the symmetric group Sn is the centraliser of U(N) on V ⊗n. R

runs over all irreducible representations with n boxes satisfying c1(R) ≤ N , where c1(R) is

the length of the first column of R. The projection operator associated with an irreducible

representation R can be expressed as an element in the group algebra of the symmetric

group Sn as

pR =
dR

n!

∑

σ∈Sn

χR(σ)σ. (2.2)

Consider the following particular linear combination of trn(σX⊗n)

OR(X) := trn(pRX⊗n). (2.3)

It was shown in [5] that it has the diagonal two-point function:

〈OR(X)†OS(X)〉 = δRSnR!dRDimR, (2.4)

which can be shown using the propagator of Xij :
1

〈X†
ijXkl〉 = δjkδil. (2.5)

1In this paper, we study the theory with gauge group U(N). See [19, 20] for the extension to gauge

group SU(N).
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The space-time dependence has been ignored because it is easily recovered from the confor-

mal invariance, and we are mainly interested in the colour and flavour dependence. Some

properties of the projector are very helpful to calculate correlation functions [18].

We extend this sector to include X†. The construction of an orthogonal set for non-

holomorphic operators in the free matrix field theory was completed in [1] by introducing

the Brauer algebra. The Brauer algebra is an algebra which has the group algebra of

Sm × Sn and contractions.2 It is reviewed in section 3 of [1].

We start with the fact that any multi-trace gauge invariant operator constructed from

m copies of X and n copies of X† can be indicated through an element of the Brauer

algebra as trm,n(bX⊗m ⊗ X∗⊗n), where trm,n is taken in the space of V ⊗m ⊗ V̄ ⊗n. At

m = n = 1, b takes 1 (the unit element) and C (contraction), which give trXtrX† and

tr(XX†), respectively. We note that trm,n(h−1bhX⊗m⊗X∗⊗n) for any h ∈ Sm×Sn provides

the same gauge invariant operator.3 This means multi-trace operators are classified by the

equivalence classes under the conjugation of the symmetric group Sm × Sn.

The Brauer algebra4 can be introduced as the centraliser of U(N) acting on V ⊗m⊗V̄ ⊗n,

V ⊗m ⊗ V̄ ⊗n =
⊕

γ

V U(N)
γ ⊗ V BN (m,n)

γ . (2.6)

The sum is over irreducible representations γ of U(N) and BN (m,n). This equation follows

from the fact that Brauer elements commute with the action of U(N) on V ⊗m⊗ V̄ ⊗n. The

irreducible representation γ is determined by a set (γ+, γ−, k), where γ+ is a partition of

m − k, γ− is a partition of n − k and k is an integer with 0 ≤ k ≤ min(m,n). These

definitions provide a constraint c1(γ+) + c1(γ−) ≤ N . Because the Wick contractions are

symbolised in terms of the symmetric group Sm ×Sn (see, e.g. (3.8)), it will be convenient

to decompose the Brauer algebra into the group algebra of Sm×Sn (which we shall denoted

by C(Sm × Sn)) as

V BN (m,n)
γ =

⊕

A

V
C(Sm×Sn)
A ⊗ Vγ→A. (2.7)

The sum is taken over irreducible representations A of the symmetric group, and Vγ→A

represents the space of the multiplicity associated with the decomposition. We shall ex-

press an irreducible representation A of Sm×Sn as a set of a partition of m and a partition

of n: (α, β). The multiplicity of the irreducible representation A = (α, β) of C[Sm × Sn]

appearing in the irreducible representation γ of BN (m,n) is read from the formula

Mγ
A := Dim(Vγ→A) =

∑

δ⊢k

g(δ, γ+;α)g(δ, γ− ;β). (2.8)

Here δ ⊢ k is shorthand to express that δ is a partition of k. The Littlewood-Richardson

coefficient g(δ, γ+;α) represents the multiplicity of the representation α appearing in the

2The contraction C is a linear map from V ⊗ V̄ to itself. The action is Cvi ⊗ v̄j = δijvk ⊗ v̄k.
3Using the cyclicity property of the trace, the conjugate action of h on b results in the conjugate action

on X
⊗m

⊗ X
∗⊗n, which is re-ordering of X’s and/or that of X

∗’s.
4The Brauer algebra is sensitive to N . For example, we have C

2 = NC for a contraction C.
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tensor product of the representations δ and γ+. This formula states γ+ = α and γ− = β

at k = 0.

An orthogonal and complete set introduced in [1] is

Oγ
A,ij(X,X∗) =: trm,n(Qγ

A,ijX
⊗m ⊗ X∗⊗n) :, (2.9)

where : means that divergences (self-contractions) associated with defining a composite

operator are omitted, i.e. 〈: tr( ) :〉 = 0. The indices i, j run over 1 to Mγ
A, behaving

like matrix indices as Qγ
A,ijQ

γ′

A′,kl = δγγ′δAA′δjkQ
γ
A,il. When the multiplicity is trivial, this

operator becomes a projector, which happens at k = 0, k = m = n, and so on.

We introduce the restricted character χγ
A,ij(b) which is defined by

χγ
A,ij(b) =

∑

mA

〈γ → A,mA, i|b|γ → A,mA, j〉, (2.10)

where |γ → A,mA, j〉 is a state of the Brauer algebra in the irreducible representation γ

associated with the decomposition to the subalgebra C(Sm × Sn). mA represents compo-

nents in A. χγ(b) =
∑

A,i χ
γ
A,ii(b) is the character of the Brauer algebra. The restricted

character enables us to express Qγ
A,ij in terms of elements in the Brauer algebra as5

Qγ
A,ij = tγ

∑

b

χγ
A,ji(b)b

∗. (2.11)

tγ is the dimension of the U(N) irreducible representation γ. b∗ is the dual element of

b which is specified by trm,n(bb∗) = 1. For more information about this dual element,

see [1, 42]. The operator Qγ
A,ij commutes with any element of Sm × Sn:

hQγ
A,ij = Qγ

A,ijh, h ∈ C(Sm × Sn), (2.12)

which can be shown by exploiting hb∗h−1 = (hbh−1)∗. The property (2.12) is signifi-

cant to show the diagonal two-point function. A projector associated with an irreducible

representation γ can be written down as

P γ = tγ
∑

b

χγ(b)b∗ =
∑

A,i

Qγ
A,ii. (2.13)

Some remarks are in order. The free two-point functions are shown to be diagonal:

〈Oγ
A,ij(X,X∗)†Oγ′

A′,i′j′(X,X∗)〉 = m!n!dAtγδγγ′δAA′δii′δjj′ , (2.14)

where dA is the dimension of Sm × Sn associated with the irreducible representation A.

There is a special sub-class of the operator Qγ
A,ij, which is parametrised by k = 0.

In this case, γ = A, i.e. γ+ = α, γ− = β (see the comment below (2.8)). It is therefore

labelled by two Young diagrams. We shall denote it by Pαβ . Because the leading term of

Pαβ is found to be pαpβ, this gives the product of the holomorphic operator and the anti-

holomorphic operator Oα(X)Oβ(X†). The k = 0 projector Pαβ also plays an important role

5A typo in (122) of [3] is corrected here.
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in the context of the large N expansion of two-dimensional Yang-Mills [21]. Using some

properties of the Brauer algebra, a new expression of the SU(N) dimension was given,

leading to a new formulation of two-dimensional Yang-Mills [2].

This class of gauge invariant operators does not require the normal ordering prescrip-

tion to make it well-defined as composite operators. In other words we can show

: trm,n(PαβX⊗m ⊗ X∗⊗n) := trm,n(PαβX⊗m ⊗ X∗⊗n). (2.15)

Considering the fact that the Wick contraction between an X and an X∗ is performed by a

contraction C, CPαβ = 0 is a sufficient condition for the above equation. It indeed follows

from the fact that the projector Pαβ is orthogonal to the other projectors relevant to k 6= 0.

We conclude this section by showing the simplest example of m = n = 1:

trXtrX† − 1

N
tr(XX†),

1

N
tr(XX†). (2.16)

The first one is labelled by k = 0 and A = ([1], [1]), while the second one is by γ = (∅, ∅, 1)
and A = ([1], [1]).

3 Diagonal basis of non-holomorphic multi-matrix gauge invariant oper-

ators

In the previous section, we have reviewed a specific set of gauge invariant operators made

from X and X† that are engineered by the Brauer algebra. In this section we generalise

this to multi-matrix models. We shall present an orthogonal set of operators composed of

Xa and X†
a, where a = 1, . . . , p, at the free coupling. This has an additional flavour index

compared to the previous case. Hence we first work out the flavour structure, and later we

will move to the colour structure. This procedure exploits the approach of [13] to deal with

global indices. When p is 3, it is relevant to the SO(6) sector of N = 4 four-dimensional

super Yang-Mills theory.

3.1 Gauge covariant operators in representation basis

We start with the following gauge covariant operator

(O
~a,~b

)IJ := (Xa1)
i1
j1
⊗ · · · ⊗ (Xam)imjm

⊗ (X∗
b1

)
im+1

jm+1
⊗ · · · ⊗ (X∗

bn
)
im+n

jm+n
, (3.1)

where ai, bi = 1, 2, . . . , p. We will rewrite the flavour structure using a representation basis.

Let VF be the space of the fundamental representation of U(p). The following Schur-

Weyl duality is relevant to the flavour structure:

V ⊗m
F ⊗ V̄ ⊗n

F =
⊕

Λ

V
U(p)
Λ ⊗ V

Bp(m,n)
Λ . (3.2)

Here the sum runs over irreducible representations of U(p) and Bp(m,n). The representa-

tion Λ is labelled by a set (Λ+,Λ−, l), where l is an integer with 0 ≤ l ≤ min(m,n), and

Λ+ and Λ− are given by a partition of m− l and a partition of n − l. It is noted that this

– 6 –
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Brauer algebra Bp(m,n) should not be confused with another Brauer algebra BN (m,n)

which is relevant for the colour structure.

The group algebra of Sm × Sn, C(Sm × Sn), is a subalgebra of Bp(m,n), hence we

consider the decomposition of Bp(m,n) into C(Sm × Sn):

V
Bp(m,n)
Λ =

⊕

Λ1

V
C(Sm×Sn)
Λ1

⊗ VΛ→Λ1, (3.3)

where Λ1 runs over irreducible representations of C(Sm × Sn). The second factor in the

right-hand side represents the space of the multiplicity arising from this decomposition.

Combining (3.2) and (3.3), we have the following equation for the flavour structure

V ⊗m
F ⊗ V̄ ⊗n

F =
⊕

Λ,Λ1

V
U(p)
Λ ⊗ V

C(Sm×Sn)
Λ1

⊗ VΛ→Λ1. (3.4)

Based on this decomposition, one may introduce a covariant operator in a representation

basis as

O
~a,~b

=
∑

Λ,MΛ,Λ1,mΛ1
,τ

C
Λ,MΛ,Λ1,mΛ1

,τ

~a,~b
OΛ,MΛ,Λ1,mΛ1

,τ . (3.5)

MΛ represents states in the irreducible representation Λ of U(p), and mΛ1 runs over states

in the Λ1. τ is an index running over the multiplicity of Λ1 in Λ. The inverse is

OΛ,MΛ,Λ1,mΛ1
,τ =

∑

~a,~b

C~a,~b
Λ,MΛ,Λ1,mΛ1

,τO~a,~b
. (3.6)

We now calculate the free two-point function of the operator. Using

〈(X†
a)ij(Xb)kl〉 = δabδjkδil, (3.7)

we get for O
~a,~b

〈: (O†

~a,~b
)IJ :: (O~a′,~b′

)KL :〉 =
∑

σ∈Sm×Sn

m
∏

k=1

δaka′
σ(k)

n
∏

l=1

δblb
′
σ(l)

(σ)KJ (σ−1)IL, (3.8)

where

(σ)KJ = (σ)
k1···km+n

j1···jm+n
:= δk1

jσ(1)
· · · δkm+n

jσ(m+n)
. (3.9)

The two-point function of the representation basis (3.6) can be computed as

〈: (O†
Λ,MΛ,Λ1,mΛ1

,τ )
I
J :: (OΛ′,M ′

Λ′ ,Λ
′
1,m′

Λ′
1
,τ ′)KL :〉

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′

∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)(σ)KJ (σ−1)IL. (3.10)

This will be proved in appendix B.1.
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3.2 Gauge invariant operators in representation basis

All gauge invariant operators constructed from the covariant operators are expressed by

trm,n(bOΛ,MΛ,Λ1,mΛ1
,τ ). To rewrite the colour structure in terms of a representation basis,

we again use the decomposition given in (2.6) and (2.7):

V ⊗m ⊗ V̄ ⊗n =
⊕

γ,A

V U(N)
γ ⊗ V

C(Sm×Sn)
A ⊗ Vγ→A. (3.11)

We thus have two kinds of irreducible representations of the symmetric group. One, Λ, is

responsible for the global indices, and the other, A, is for the colour indices. These two

kinds of representations come from two different actions of the symmetric group which are

related each other as we shall discuss later (see (3.18) and appendix C). We now consider

the inner tensor product of A ⊗ A decomposing into Λ1 and denote the multiplicity of

Λ1 by τΛ1 . Introducing the Clebsch-Gordan coefficient6 C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

associated with this

decomposition, we propose the following gauge invariant operator

Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ =

∑

mA,m′
A,mΛ1

C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

b∈BN (m,n)

Dγ

A,mA,j,m′
A,i

(b∗) : trm,n(bOΛ,MΛ,Λ1,mΛ1
,τ ) : . (3.12)

Here

Dγ

A,mA,j,m′
A,i

(b) := 〈γ → A,mA, j|b|γ → A,m′
A, i〉. (3.13)

A remark is

χγ
A,ji(b) =

∑

mA

Dγ
A,mA,j,mA,i(b) (3.14)

is the restricted character in (2.10).

We can show that the two-point function of the operator (3.12) is diagonal:

〈Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ

†O
γ′,A′,i′j′,τ ′

Λ′
1

Λ′,M ′
Λ′ ,Λ

′
1,τ ′〉 = m!n!dΛ1

1

tγ
δγγ′δAA′δΛΛ′δMΛM ′

Λ′
δΛ1Λ′

1
δτΛ1

τ ′
Λ′
1

δττ ′δii′δjj′ . (3.15)

This is the main result of this paper. We shall give the proof to the appendix B.

For p = 1, the operator should coincide to the operator seen in the previous section.

In this case, Λ is a one-dimensional representation, so the covariant operator is labelled by

Λ alone i.e. the number of X and that of X∗. The Clebsh-Gordan for this case is given by

CA,mA,A,m′
A

=
1√
dA

δmAm′
A
. (3.16)

We thus obtain

Oγ,A,ij =
1√
dA

∑

b

χγ
A,ji(b

∗)trm,n(bX⊗m ⊗ X∗⊗n), (3.17)

which is equivalent to (2.9) up to the normalisation factor.

6See [22] for some properties of the Clebsch-Gordan coefficient.
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Before proceeding to the next subsection, we summarise the relation between the two

actions of the symmetric group. Two kinds of Brauer algebras have been introduced, one

is relevant for the flavour structure, and the other is for the colour structure. Both Brauer

algebras contain the same sub-algebra, that is, the group algebra of Sm × Sn, but they

admit different actions on the operator. The permutation acting on the flavour indices is

equivalent to re-ordering of X’s and/or that of X∗’s. If we act with permutations on upper

colour indices and lower colour indices simultaneously, we effectively get permutations on

flavour indices:
(

O
~a,~b

)σ(I)

σ(J)
=

(

O
σ(~a),σ(~b)

)I

J
. (3.18)

In appendix C we shall confirm that the gauge invariant operator respects this symmetry.

3.3 Operator in the k = 0 representation of γ

Let us now study the special class of the operator where the representation of γ is specified

by k = 0. The multiplicity indices related to the decomposition γ → A can go away because

γ = A from the formula (2.8) at k = 0. So the operator is simplified to be

OA,τΛ1
Λ,MΛ,Λ1,τ = C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A

∑

b∈BN (m,n)

DA
mA,m′

A
(b)trm,n(b∗OΛ,MΛ,Λ1,mΛ1

,τ )

= C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

α∈Sm×Sn

DA
mA,m′

A
(α)trm,n(α∗OΛ,MΛ,Λ1,mΛ1

,τ )

= C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

α∈Sm×Sn

DA
mA,m′

A
(α)trm,n(1∗α−1OΛ,MΛ,Λ1,mΛ1

,τ ). (3.19)

DA
mA,m′

A
(C) = 0 has been used to get the second equality. The third equality follows from

the formula α∗ = (1∗)α−1 for α ∈ Sm × Sn which is derived in [1].

For the complete set of the X and X† sector, we could show that operators correspond-

ing to the k = 0 representation do not require the normal ordering prescription because

short distance singularities arising from self-contractions vanish. This property also holds

in this case. Using the fact that the Wick contraction between an X and an X∗ can

be expressed by a contraction C, we show that replacing a set of an X and an X∗ by a

contraction C in (3.19) vanishes:
∑

α

DA
mA,m′

A
(α)trm,n(C1∗α−1O′)

=
∑

α

DA
mA,m′

A
(α)

∑

γ′

χγ′

(C1∗α−1)trm,n(P γ′

O′)

=
∑

α

∑

γ′

DA
mA,m′

A
(α)Dγ′

IJ (C1∗)Dγ′

JI(α
−1)trm,n(P γ′

O′)

∝ DA
mA,m′

A
(C1∗) = 0. (3.20)

Here the first equality comes from the decomposition (2.6), and we have used the orthogo-

nality of the representation matrix (B.14) in the last step. In this way, we can demonstrate

that the normal ordering prescription is no longer needed for gauge invariant operators

belonging to the k = 0 representation.
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Another property of the k = 0 sector is that the leading term contains the product of a

holomorphic operator and an anti-holomorphic operator. We shall show that the operator

constructed in [13] will be reproduced as a subset of our operator. To show this, we use an

explicit expression of 1∗:

1∗ =
1

Nm+n
Ω−1

m Ω−1
n + · · · , (3.21)

where Ωm is a central element in the group algebra of Sm, and · · · are terms which are not

in C(Sm × Sn) but in BN (m,n). See appendix A in [1] about more concrete form of 1∗ for

some examples. We substitute the leading term of 1∗ into (3.19) and restrict to the l = 0

sector of the representation Λ. This implies we do not see terms in which flavour indices are

contracted between X and X†. This is the case of Λ = Λ1, so the index τ can be suppressed.

The operator (3.19) with the above restrictions taken into account becomes

1

Nm+n
C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A

∑

α∈Sm×Sn

DA
mA,m′

A
(α)trm,n(Ω−1

m Ω−1
n α−1OΛ1,mΛ1

)

=
1

Nm+n
C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A

∑

α∈Sm×Sn

DA
mA,m′

A
(Ω−1

m Ω−1
n α)trm,n(α−1OΛ1,mΛ1

)

=
1

Nm+n
C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A

1

dA
χA

(

Ω−1
m Ω−1

n

)

∑

α∈Sm×Sn

DA
mA,m′

A
(α)trm,n(α−1OΛ1,mΛ1

)

=
1

Nm+n
C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A

1

dA
χA

(

Ω−1
m Ω−1

n

)

∑

σ∈Sm,τ∈×Sn

DA
mA,m′

A
(σ ⊗ τ)trm,n(σ−1 ⊗ τ−1OΛ1,mΛ1

).

Each factor can be factorised into the Sm part and the Sn part. For example, the character

can be rewritten as

χA

(

Ω−1
m Ω−1

n

)

= χR

(

Ω−1
m )χS(Ω−1

n

)

=
1

m!n!

Nm+nd2
Rd2

S

DimRDimS
, (3.22)

where we have expressed A as (R,S) where R is an irreducible representation of Sm and S

is an irreducible representation of Sn, and the formula DimR = Nm

m! χR(Ωm) has been used.

Taking this factorisation into account, we find that the operator in the k = 0 representation

of γ and the l = 0 representation of Λ contains the product of the holomorphic multi-matrix

operator and the anti-holomorphic multi-matirx operator presented in [13, 17].

4 Examples

In this section, we present explicit forms of our operator for two simple cases. We will set

p = 3 to see a connection to the N = 4 SYM.

4.1 m = 1, n = 1

In this case, there are only two cases for Λ = (Λ+,Λ−, l), i.e. ([1], [1], 0) and (∅, ∅, 1). We

call them l = 0 and l = 1 because the integer l completely identifies them.
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The bases |Λ,MΛ〉 are

|l = 0〉 = |a, b〉 − 1

3
δab

3
∑

c=1

|c, c〉,

|l = 1〉 =
1

3
δab

3
∑

c=1

|c, c〉. (4.1)

Using the above states, the Clebsch-Gordan coefficient Ca′,b′

Λ,MΛ
= 〈a′, b′|Λ,MΛ〉 can be cal-

culated as

Ca′,b′

l=0 = 〈a′, b′|l = 0〉 = δaa′δbb′ −
1

3
δabδa′b′ ,

Ca′,b′

l=1 = 〈a′, b′|l = 1〉 =
1

3
δabδa′b′ , (4.2)

which yield covariant operators OΛ,MΛ
= Ca′,b′

Λ,MΛ
(Xa′ ⊗ Xb′):

Ol=0 = Xa ⊗ X∗
b − 1

3
δab

∑

c′

Xc′ ⊗ X∗
c′ ,

Ol=1 =
1

3
δab

∑

c′

Xc′ ⊗ X∗
c′ . (4.3)

We next work out the gauge invariant operator. For this case the operator (3.12) is

simplified to

Oγ
Λ,MΛ

=
∑

b∈BN (1,1)

Dγ(b∗)tr1,1(bOΛ,MΛ
) =

1

tγ
tr1,1(P

γOΛ,MΛ
). (4.4)

γ is specified by an integer k, which takes either k = 0 or k = 1. P γ is a projector associated

with γ:

P (k=0) = 1 − C

N
, P (k=1) =

C

N
. (4.5)

Re-normalising the operators as Oγ → tγOγ for convenience, we reach the following gauge

invariant operators

Ok=0,l=0 = (trXa)(trX
†
b ) −

1

N
tr(XaX

†
b ) −

1

3
δab(trXc)(trX

†
c ) +

1

3N
δabtr(XcX

†
c )

Ok=1,l=0 =
1

N

(

tr(XaX
†
b ) −

1

3
δabtr(XcX

†
c )

)

Ok=0,l=1 =
1

3
δab

(

(trXc)(trX
†
c ) −

1

N
tr(XcX

†
c )

)

Ok=1,l=1 =
1

3N
δabtr(XcX

†
c ). (4.6)

In fact, these are not eigenstates of the one-loop dilatation operator.7 Correct eigenstates

at one-loop are

Ok=0,l=0

7The one-loop dilatation operator in the so(6) sector will be rewritten in terms of the complex variables

in appendix A.
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Ok=1,l=0

Ok=0,l=1 + Ok=1,l=1 =
1

3
δab(trXc)(trX

†
c )

N2 − 1

N
Ok=1,l=1 −

1

N
Ok=0,l=1 =

1

3
δab

(

tr(XcX
†
c ) −

1

N
(trXc)(trX

†
c )

)

(4.7)

with eigenvalues 0, 0, 0, 6/
√

3, respectively. The first three are operators in the short

multiplets. The last one is the Konishi operator. The l = 0 representations are not mixed

up with the l = 1 representations because the Hamiltonian commutes with the Brauer

algebra governing the flavour structure.

4.2 m = 2, n = 1

We next show the case at m = 2, n = 1. States |Λ,Λ1〉 are

|[2], [1], 0〉 =
1

2
(|a, b, c〉 + |b, a, c〉) − 1

8
δac

3
∑

d=1

(|d, b, d〉 + |b, d, d〉)

−1

8
δbc

3
∑

d=1

(|a, d, d〉 + |d, a, d〉)

|[1, 1], [1], 0〉 =
1

2
(|a, b, c〉 − |b, a, c〉) − 1

4
δac

3
∑

d=1

(|d, b, d〉 − |b, d, d〉)

−1

4
δbc

3
∑

d=1

(|a, d, d〉 − |d, a, d〉)

|([1], ∅, 1), ([2], [1])〉 =
1

8
δac

3
∑

d=1

(|d, b, d〉 + |b, d, d〉) +
1

8
δbc

3
∑

d=1

(|a, d, d〉 + |d, a, d〉)

|([1], ∅, 1), ([1, 1], [1])〉 =
1

4
δac

3
∑

d=1

(|d, b, d〉 − |b, d, d〉) +
1

4
δbc

3
∑

d=1

(|a, d, d〉 − |d, a, d〉).

Projectors in (4.11) and (4.13) with N replaced by 3(= p) are useful to calculate the above

equations. Recall that Λ = Λ1 for the l = 0 representation. Then the Clebsch-Gordan

coefficients are

Ca′,b′

[2],[1],l=0 =
1

2
(δaa′δbb′δcc′ + δab′δba′δcc′) −

1

8
δac(δa′c′δbb′ + δb′c′δba′)

−1

8
δbc(δb′c′δaa′ + δa′c′δab′)

Ca′,b′

[1,1],[1],l=0 =
1

2
(δaa′δbb′δcc′ − δab′δba′δcc′) −

1

4
δac(δa′c′δbb′ − δb′c′δba′)

−1

4
δbc(δb′c′δaa′ − δa′c′δab′)

Ca′,b′

l=1,Λ1=([2],[1]) =
1

8
δac(δbb′δa′c′ + δba′δb′c′) +

1

8
δbc(δaa′δb′c′ + δab′δa′c′)

Ca′,b′

l=1,Λ1=([1,1],[1]) =
1

4
δac(δbb′δa′c′ − δba′δb′c′) +

1

4
δbc(δaa′δb′c′ − δab′δa′c′), (4.8)

giving rise to the following covariant operators

O[2][1],l=0 =
1

2
(Xa ⊗ Xb ⊗ X∗

c + Xb ⊗ Xa ⊗ X∗
c ) − Ol=1,Λ1=([2][1])
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O[1,1][1],l=0 =
1

2
(Xa ⊗ Xb ⊗ X∗

c − Xb ⊗ Xa ⊗ X∗
c ) − Ol=1,Λ1=([1,1][1])

Ol=1,Λ1=([2][1]) =
1

8
δac(Xc′ ⊗ Xb ⊗ X∗

c′ + Xb ⊗ Xc′ ⊗ X∗
c′)

+
1

8
δbc(Xa ⊗ Xc′ ⊗ X∗

c′ + Xc′ ⊗ Xa ⊗ X∗
c′)

Ol=1,Λ1=([1,1][1]) =
1

4
δac(Xc′ ⊗ Xb ⊗ X∗

c′ − Xb ⊗ Xc′ ⊗ X∗
c′)

+
1

4
δbc(Xa ⊗ Xc′ ⊗ X∗

c′ − Xc′ ⊗ Xa ⊗ X∗
c′). (4.9)

We next present gauge invariant operators. For the k = 0 representation of γ, some

labels in (3.12) are suppressed to give

Oγ(k=0)
Λ =

∑

b∈BN (2,1)

Dγ(b∗)tr2,1(bOΛ) =
1

tγ
tr2,1(P

γOΛ), (4.10)

where P γ is the central projection operator in the Brauer algebra, which is given in [1] by

P[2] ¯[1] =

(

1 − 1

N + 1
C

)

p[2],

P[12] ¯[1] =

(

1 − 1

N − 1
C

)

p[12]. (4.11)

Here C := C11̄ + C21̄ commutes with any element in C(S2). For the k = 1 representation,

we have

Oγ(k=1),A
Λ,Λ1

=
∑

b∈BN (2,1)

Dγ
A(b∗)tr2,1(bOΛ,Λ1) =

1

tγ
tr2,1(P

γ
AOΛ,Λ1), (4.12)

where

P
(k=1,γ+=[1],γ−=∅)

[2] ¯[1]
=

1

N + 1
Cp[2],

P
(k=1,γ+=[1],γ−=∅)

[12] ¯[1]
=

1

N − 1
Cp[12]. (4.13)

We exhibit some of them explicitly

tr2,1(P[2] ¯[1]O[2][1],l=0)

=
1

2

(

trXatrXbtrX
†
c + tr(XaXb)trX

†
c

)

−1

2

1

N + 1

(

trXatr(XbX
†
c ) + trXbtr(XaX

†
c ) + tr(XaXbX

†
c ) + tr(XbXaX

†
c )

)

−tr2,1(P[2] ¯[1]Ol=1,Λ1=[2][1]),

tr2,1(P[2] ¯[1]Ol=1,Λ1=[2][1])

=
1

8
δac(trXbtrXc′trX

∗
c′ + tr(XbXc′)trX

∗
c′)

+
1

8
δbc(trXatrXc′trX

∗
c′ + tr(XaXc′)trX

∗
c′)

−1

8

1

N + 1
δac(trXbtr(Xc′Xc′) + trXc′tr(XbXc′) + tr(XbXc′X

†
c′) + tr(XbX

†
c′Xc′))

−1

8

1

N + 1
δbc(trXatr(Xc′Xc′) + trXc′tr(XaXc′) + tr(XaXc′X

†
c′) + tr(XaX

†
c′Xc′)).
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5 Quantum mechanics and conserved charges measuring representation

labels

In this section, we study the matrix quantum mechanics which is obtained by the dimen-

sional reduction of the four-dimensional N = 4 SYM on S3 × R. Because we are mainly

interested in the free theory, we ignore the interaction terms. It is found that the Hamilto-

nian can be given by a set of the harmonic oscillators [5], and it has been known that the

harmonic oscillator is characterised by many conserved charges. Some conserved charges

whose eigenvalues can specify an orthogonal state were constructed in [3]. Furthermore,

the construction was based on symmetries which are enhanced at the free level. In this

section, we show conserved charges for the present context.

The Hamiltonian and U(1)3 charge are

H =
∑

a

tr(A†
aAa + B†

aBa) + N2,

Ja = tr(B†
aBa − A†

aAa), (5.1)

where we have introduced the matrix annihilation and creation operators with the non-zero

commutation relations

[(Aa)ij , (A
†
b)kl] = δabδjkδil, [(Ba)ij , (B

†
b)kl] = δabδjkδil. (5.2)

Gauge covariant states are obtained by acting with A† and B† on the vacuum with A|0〉 =

B|0〉 = 0. Because the gauge invariance enforces all upper indices to be contracted with all

lower indices, all gauge invariant operators take the form of trm,n(Σ(b)(A†)⊗m ⊗ (B†)⊗n).

Here Σ is a map from elements in BN (m,n) to elements in C(Sm+n) introduced in [1].8

Our claim in the previous sections can be straightforwardly applied to give the following

orthogonal state,

|Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ 〉
=

∑

mA,m′
A,mΛ1

C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

b

Dγ

A,mA,j,m′
A,i

(b∗)
∑

~a,~b

C~a,~b
Λ,MΛ,Λ1,mΛ1

,τ trm,n(Σ(b)O
~a,~b

)|0〉, (5.3)

where

O
~a,~b

= A†
a1

⊗ · · · ⊗ A†
am

⊗ B†
b1
⊗ · · · ⊗ B†

bn
. (5.4)

The inner product is diagonal:

〈Oγ′,A′,i′j′,τ ′
Λ1

Λ′,M ′
Λ′ ,Λ

′
1,τ ′ |O

γ,A,ij,τΛ1
Λ,MΛ,Λ1,τ 〉 = m!n!dΛ1

1

tγ
δγγ′δAA′δΛΛ′δMΛM ′

Λ′
δΛ1Λ′

1
δτΛ1

τ ′
Λ′
1

δττ ′δii′δjj′. (5.5)

Before showing a set of conserved charges whose eigenvalues identify the labels of the

orthogonal state, we shall explain symmetries of the Hamiltonian.

8One simple example is tr(XX
†) = tr1,1(CX ⊗X

∗) = tr2(Σ(C)X ⊗X
†). The map Σ was also exploited

in [14] to construct another non-holomorphic extension for a single complex matrix.
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The original scalar matrix field theory action is invariant under the adjoint unitary

transformation. We can express the conserved matrix current in terms of the annihilation

and creation operators as [Aa, A
†
a] for the A-sector and [Ba, B

†
a] for the B-sector. We will

find that we have more symmetries at the free level. In order to see enhanced symmetries

of this Hamiltonian, we decompose9 the generator and name them as

(GL,A)ij :=
∑

a

(GL,Aa)ij , (GL,Aa)ij := (A†
a)kj(Aa)ik

(GR,A)ij :=
∑

a

(GR,Aa)ij , (GR,Aa)ij := (A†
a)ik(Aa)kj (5.6)

and similarly for the B-sector. We also define

(GL)ij := (GL,A)ij + (GL,B)ij ,

(GR)ij := (GR,A)ij + (GR,B)ij . (5.7)

They generate the left action and the right action:

[tr(ΛGL,A), (Aa)ij ] = −(ΛAa)ij ,

[tr(ΛGR,A), (Aa)ij ] = (AaΛ)ij . (5.8)

It is easy to show that

[GL,A, tr(AaA
†
a)] = 0, [GR,A, tr(AaA

†
a)] = 0, (5.9)

and similar equations for the B-sector, implying that all of GL,A, GR,A and GL,B , GR,B

generate symmetries of the Hamiltonian. They form the u(N) commutation relations

[(GL,Aa)ij , (GR,Aa)kl] = 0,

[(GL,Aa)ij, (GL,Ab
)kl] = δab((GL,Aa)kjδil − (GL,Aa)ilδjk),

[(GR,Aa)ij , (GR,Ab
)kl] = δab((GR,Aa)ilδjk − (GR,Aa)kjδil). (5.10)

Since we also have the same relations for the B-sector, we thus have four commuting copies

of the u(N) algebra.

In terms of these generators, the Hamiltonian and the angular momentum can be

expressed by

H = tr(GL,A + GL,B),

Ja = tr(GL,Ba − GL,Aa). (5.11)

It is mentioned that tr(GL,Aa) = tr(GR,Aa) and tr(GL,Ba) = tr(GR,Ba). Because GL + GR

generates the adjoint gauge transformation, we have

GL + GR = 0 (5.12)

on gauge invariant states.

9Such decomposition was also considered in [23].
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From now on we present some conserved operators which act on the orthogonal state

with eigenvalues measuring the representation labels. We shall build operators from the

symmetry generators, so it is manifest that they commute with the Hamiltonian. The

construction of those operators is shown in [3]. We define the symbol
.
= to assume the

actions on |Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ 〉. We first show three operators

tr(GL)2
.
= tr(GR)2

.
= C2(γ),

tr (GL,A)2
.
= tr (GR,A)2

.
= C2(α),

tr (GL,B)2
.
= tr (GR,B)2

.
= C2(β), (5.13)

where C2 is the quadratic Casimir of U(N). These commute each other without assuming

the action on the state. We also have similar equations for higher order actions, for example,

tr (GL)r .
= tr (GR)r

.
= Cr(γ). (5.14)

It was also shown that the multiplicity associated with the decomposition γ → A of the

colour structure can be measured as

tr
(

(GL,A)2 GL,B

)

.
= C(γ, α, β, i),

tr
(

(GR,A)2 GR,B

)

.
= C(γ, α, β, j), (5.15)

where C(γ, α, β, i) is a quantity depending on γ, α, β, i, but the exact form has not been

found.10

In addition to the enhanced symmetry generators GL,A, GR,A and GL,B , GR,B , we

have another enhanced symmetry which is generated by

(GE)kljm := (GE,A)kljm + (GE,B)kljm, (5.16)

where

(GE,A)kljm :=
∑

a

(GE,Aa)kljm :=
∑

a

(Aa)
†
kl(Aa)jm. (5.17)

We find that this generates a U(N2) symmetry, which can be manifested by introducing a

composite index I = (i, j), where I takes N2 values when i and j run over N values. The

use of the composite index enables us to express the generator as

(GE,A)IJ =
∑

a

(Aa)
†
I(Aa)J . (5.18)

The commutation relation of GE is

[(GE)IJ , (GE)KL] = (GE)ILδJK − (GE)KJδIL. (5.19)

The actions of GE,A on Aa and A†
a are

[(GE,A)IJ , (A†
b)K ] = δJK(A†

b)I ,

[(GE,A)IJ , (Ab)K ] = −δIK(Ab)J , (5.20)

10In the paper [3], it was shown that tr
`

(GL,A)2 GL,B

´

can recognise the multiplicity index, and it was

confirmed for some examples.
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where we have defined δJK = δj1k2δj2k1 for J = (j1, j2) and K = (k1, k2). We also have

[(GE,A)kljm, (GL,A)pq] = (GE,A)klpmδjq − (GE,A)kqjmδlp,

[(GE,A)kljm, (GR,A)pq] = (GE,A)kljqδpm − (GE,A)pljmδqk. (5.21)

It is also easy to see that the symmetry generated by GE is indeed a symmetry of the

Hamiltonian:

[(GE,A)kljm, tr(A†
aAa)] = 0. (5.22)

With the enhanced U(N2) symmetry we can define an operator which can measure τ1, i.e.

the number of copies of Λ1 in the inner tensor product of A ⊗ A, as

tr (GLGEGR)
.
= C(τΛ1). (5.23)

C(τΛ1) is a quantity depending on τ1.

The representation labels associated with the flavour indices can be measured in terms

of EAab := tr(A†
aAb), whose action on A† is

[EAab, (A
†
c)ij ] = δbc(A

†
a)ij . (5.24)

EAab satisfies the u(p) commutation relation:

[EAab, EAcd] = δbcEAad − δadEAcb. (5.25)

The quadratic Casimir of u(p) appears an eigenvalue of the quadratic action of Eab :=

EAab + EBab on the orthogonal state:

EabEab
.
= C2(Λ). (5.26)

We also have

EAabEAab
.
= C2(α1), EBabEBab

.
= C2(β1) (5.27)

for Λ1 = (α1, β1). The index τ which runs over the multiplicity of Λ1 in Λ would be

measured by

EAabEAbcEBca. (5.28)

In summary, we have provided some conserved operators which can be diagonalised by

the orthogonal state. In other words, the orthogonal state proposed in this paper can be

specified by the simultaneous diagonalisation of the conserved operators.

Operators which have the diagonal actions on an orthogonal state can be organised by

the enhanced symmetries of the Hamiltonian. General multi-trace operators made from

those generators are all conserved, and they would form an extension of the W∞ algebra. It

is interesting to ask how the enhanced symmetries can be connected with the integrability

of this system. Conserved charges may also be helpful to understand gravitational duals

or space-time interpretations (see [24, 25] for such discussions).
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6 Discussions

In this paper, we have proposed an orthogonal set of non-holomorphic gauge invariant

operators made from some complex matrices at the free coupling based on the Brauer

algebra. Below are possible future directions along this line.

One remaining problem which should be discussed is to see if this proposed operator

exhausts multi-matrix gauge invariant operators. For the case of a single complex matrix,

a counting formula in terms of group theoretic languages was given in [1], and it is proved

for large N in [26]. It has not, however, been cleared how the counting is modified when N

is finite in the context of Brauer algebra. One modification of the finite N case is to impose

the constraint c1(γ+) + c1(γ−) ≤ N , which is naturally expected from the definition of the

U(N) group. This constraint seems to hold the attention because it realises a generalisation

of the cut-off c1(R) ≤ N for the half-BPS case. In the half-BPS case, the cut-off can be

translated into the cut-off for the angular momentum of giant gravitons [10]. (Such an

effect was originally studied in [27, 28].) The cut-off for the present case would give a

constraint for a composite angular momentum of giant gravitons and anti-giant gravitons.

For the single complex matrix case, more analyses at finite N will be given in [26]. The

counting operators including the finite N case for the non-holomorphic multi-matrix case

will be discussed in future publications.

Another basis of non-holomorphic one-matrix gauge invariant operators was built

in [14], where the symmetric group plays a role instead of the Brauer algebra. This basis

was originally proposed to study excitations of giant gravitons [29–32]. It will be possi-

ble to construct another basis for non-holomorphic multi-matrix operators as an extension

of [14]. As is discussed in [3], a difference of two bases in a sector can be explained by

the fact that a set of Casimirs characterising an orthogonal basis does not commute with

another set of Casimirs characterising another orthogonal basis. It would be nice to ask

roles of two different bases from the point of view of dual physics.

For the highest weight state in the half-BPS sector, the physics is characterised by a

single Young diagram alone. The number and the angular momentum of giant gravitons

are encrypted in a single Young diagram. On the other hand, the Brauer algebra brings in

two kinds of representation labels, i.e. γ = (γ+, γ−, k), and A = (α, β). Having diagonalised

two-point functions at the free level, the representation labels will be directly related to a

tensionless string theory. In our previous paper [1], it was conjectured that the operator has

a close connection with a system of giant gravitons and anti-giant gravitons. The k = 0

representation would be naturally related to such a system, where γ+ = α would read

the number and angular momentum of giant gravitons while γ− = β would read those of

anti-giant gravitons. Because k is the number of boxes which are got rid of from m boxes

and n anti-boxes, one can anticipate that k 6= 0 representations would contain branes

and anti-branes with smaller quantum numbers. At k = m = n, one may expect closed

string excitations without branes and anti-branes. If we include corrections of the t’Hooft

coupling, this system may start showing the instability originated from the existence of

branes and anti-branes. If our operators can really describe physics of the unstable system,

it is natural to expect physics of tachyon condensation to be encoded into the representation
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labels in a way. Fortunately, it is possible to study this system at finite string scale where

tachyon has the negative mass squared because this SO(6) sector is closed at one-loop. In

this sense, this system will be a good framework to know how the Brauer algebra captures

such an interesting unstable system. The operator mixing problem has been reported

in [33–37]. On the other hand, the one-loop correction was studied in the language of

the representation basis for the U(2) holomorphic sector in [39], where a restricted mixing

pattern was found for Young diagrams. A similar restricted mixing was also given in [31, 32]

in the context of the restricted Schur polynomials. The mixing problem was studied in [38]

in terms of a basis expressed by the symmetric group, and the Hamiltonian was expressed

by splitting and joining interactions. Studies along these lines using the bases proposed in

this paper would shed light on the role of the Brauer algebra.

Our orthogonal operators are entirely specified by some group theoretic operators con-

structed from generators for the enhanced symmetries. Because Casimir operators know

information about representation labels of orthogonal sets, studies of Casimirs operators

at the one-loop level would tell us about the operator mixing. For example, a relation

between the one-loop dilatation operator and the Casimirs may suggest how orthogonal

operators mix under quantum corrections. The breaking of the enhanced symmetries with

the interactions turned on can be possibly associated with the operator mixing problem.

We hope to understand the role of the enhanced symmetries by looking for a connection

to the integrability.
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A One-loop dilatation operator

In this section, we rewrite the one-loop dilatation operator in terms of the complex vari-

ables.

The dilatation operator in the SO(6) sector up to one-loop order was given [40, 41] by

D = D0 + D2 := D0 + g2H, (g2 = g2
YMN/8π2) (A.1)

where

H = N−1

(

−1

2
: tr[Φm,Φn][Φ̌m, Φ̌n] : −1

4
: tr[Φm, Φ̌n][Φm, Φ̌n] :

)

. (A.2)

Φm (m = 1, . . . , 6) is the scalar fields. Φ̌ represents the following derivative action

(Φ̌m)ij(Φn)kl = δm
n δilδkj (A.3)
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for the u(N) gauge group.

We define the complex combination of two scalars

Xa = Φ2a−1 + iΦ2a, (a = 1, 2, 3). (A.4)

Solving for Φ, we get

Φ2a−1 =
1

2

(

Xa + X†
a

)

, Φ2a =
1

2i

(

Xa − X†
a

)

. (A.5)

We express these equations for later convenience as

Φm = ai
mZi, (A.6)

where Zi = (X1,X
†
1 ,X2,X

†
2 ,X3,X

†
3). The derivative of the complex matrix is defined by

X̌a =
1

2

(

Φ̌2a−1 − iΦ̌2a
)

, (A.7)

satisfying (X̌a)ij(Xb)kl = δabδilδkl. We solve for Φ̌ as

Φ̌2a−1 = X̌a + X̌†
a, Φ̌2a = i

(

X̌a − X̌†
a

)

, (A.8)

which we shall denote compactly by

Φ̌m = bi
mŽi, (A.9)

where Ži = (X̌1, X̌
†
1 , X̌2, X̌

†
2 , X̌3, X̌

†
3).

Using these complex variables, we can rewrite the first term of the Hamiltonian (A.2) as

tr[Φm,Φn][Φ̌m, Φ̌n] = ai
maj

nbk
mbl

ntr[Zi, Zj ][Ž
k, Ž l]

= gikgjltr[Zi, Zj ][Ž
k, Ž l]

= tr[Xa,Xb][X̌a, X̌b] + tr[Xa,X
†
b ][X̌a, X̌

†
b ]

+tr[X†
a,Xb][X̌

†
a, X̌b] + tr[X†

a,X
†
b ][X̌†

a, X̌
†
b ]. (A.10)

We have defined the metric gik =
∑

m ai
mbk

m = δik. On the other hand, the second term of

the Hamiltonian can be rewritten as

tr[Φm, Φ̌n][Φm, Φ̌n] = ai
mbj

nak
mbl

ntr[Zi, Ž
j][Zk, Ž

l]

= hikh̃jltr[Zi, Ž
j ][Zk, Ž

l]

= tr[Xa, X̌b][X
†
a, X̌†

b ] + tr[Xa, X̌
†
b ][X

†
a, X̌b]

+tr[X†
a, X̌

†
b ][Xa, X̌b] + tr[X†

a, X̌b][Xa, X̌
†
b ]

= 2tr[Xa, X̌b][X
†
a, X̌

†
b ] + 2tr[Xa, X̌

†
b ][X

†
a, X̌b], (A.11)

where we have defined the metric as hik = ai
mak

m and h̃jl = bj
nbl

n, with non-zero components

hXaX̄a = 1/2 and h̃XaX̄a = 2. Collecting (A.10) and (A.11), we get the Hamiltonian in

terms of the complex variables as

H = − 1

2N
:
(

tr[Xa,Xb][X̌a, X̌b] + tr[Xa,X
†
b ][X̌a, X̌

†
b ]

+tr[X†
a,Xb][X̌

†
a, X̌b] + tr[X†

a,X
†
b ][X̌

†
a, X̌†

b ]

+tr[Xa, X̌b][X
†
a, X̌

†
a] + tr[Xa, X̌

†
b ][X†

a, X̌b]
)

: . (A.12)
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B Proof of the diagonal two-point function

In this section, we show detailed calculations of the two-point functions.

B.1 Two-point function for the covariant operator

The two-point function of the representation basis (3.6) can be computed as

〈: (O†
Λ,MΛ,Λ1,mΛ1

,τ )
I
J :: (OΛ′,M ′

Λ′ ,Λ
′
1,m′

Λ′
1
,τ ′)KL :〉

=
∑

a,b,a′,b′

(C~a,~b
Λ,MΛ,Λ1,mΛ1

,τ )
∗C

~a′,~b′

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′〈: (O†

~a,~b
)IJ :: (O~a′,~b′

)KL :〉

=
∑

a,b,a′,b′

(C~a,~b
Λ,MΛ,Λ1,mΛ1

,τ )
∗C

~a′,~b′

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′

∑

σ∈Sm×Sn

m
∏

k=1

δaka′
σ(k)

n
∏

l=1

δblb
′
σ(l)

(σ)KJ (σ−1)IL

=
∑

a,b

∑

σ∈Sm×Sn

(C~a,~b
Λ,MΛ,Λ1,mΛ1

,τ )
∗C

aσ−1(1),...,aσ−1(m),bσ−1(1),...,aσ−1(n)

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′ (σ)KJ (σ−1)IL

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′

∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)(σ)KJ (σ−1)IL. (B.1)

To get the third equality, we solved the delta symbols. In the last step, we have used

C
aσ−1(1),...,aσ−1(m),bσ−1(1),...,aσ−1(n)

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′ = DΛ1

m′
Λ′
1
m′′

Λ′
1

(σ−1)Ca1,...,am,b1,...,an

Λ′,M ′
Λ′ ,Λ

′
1,m′′

Λ′
1
,τ ′ (B.2)

and the following equation

∑

~a,~b

(C
Λ,MΛ,Λ1,mΛ1

,τ

~a,~b
)∗C

Λ′,M ′
Λ′ ,Λ

′
1,m′

Λ′
1
,τ ′

~a,~b
= δΛΛ′δMΛM ′

Λ′
δΛ1Λ′

1
δmΛ1

m′
Λ′
1

δττ ′ . (B.3)

The derivation of this equation is completely similar to (69) in [17]. (B.2) comes from the

fact that σ−1 acts only on V
C(Sm×Sn)
Λ1

when it acts on V ⊗m ⊗ V̄ ⊗n in (3.4).

B.2 Two-point function for the gauge invariant operator

In this subsection, we shall present the proof of (3.15). Using the two-point function of the

covariant operator (3.10), we get

〈Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ

†O
γ′,A′,i′j′,τ ′

Λ′
1

Λ′,M ′
Λ′ ,Λ

′
1,τ ′〉

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A
C

τ ′
Λ′
1
,Λ′

1,m′
Λ′
1

A′,mA′ ,A′,m′
A′

×
∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)
∑

b,b′∈BN (m,n)

Dγ

A,mAj,m′
Ai

(b∗)Dγ′

A′,mA′j′,m′
A′ i

′(b
′∗)trm,n(b†σb′σ−1),(B.4)

where we have used the fact that the Clebsch-Gordan coefficient C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

and the rep-

resentation matrix of Brauer elements are real.

Let us work on trm,n(bσb′σ−1). Using the Schur-Weyl duality (2.6), we find

trm,n(b†σb′σ−1) =
∑

γ′′

tγ
′′

χγ′′

(b†σb′σ−1), (B.5)
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where tγ
′′

and χγ′′
(b) are the dimension of U(N) and the character of the Brauer algebra

associated with the irreducible representation γ′′. We decompose the character by inserting

the completeness of |γ → A,mA, iA〉 as

χγ′′

(b†σb′σ−1) = 〈γ′′ → B,mB , iB |b†|γ′′ → C,mC , iC〉DC
mCm′

C
(σ)

〈γ′′ → C,m′
C , iC |b′|γ′′ → B,m′

B, iB〉DB
m′

BmB
(σ−1), (B.6)

where the summation is assumed to be taken for all repeated letters except γ′′. We note that

〈γ′′ → B,mB, iB |σ|γ′′ → C,mC , iC〉 = DB
mBmC

(σ)δBCδiBiC . (B.7)

Using the above decomposition of the character, one can calculate (B.4) as

〈Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ

†O
γ′,A′,i′j′,τ ′

Λ′
1

Λ′,M ′
Λ′ ,Λ

′
1,τ ′〉

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A
C

τ ′
Λ′
1
,Λ′

1,m′
Λ′
1

A′,mA′ ,A′,m′
A′

×
∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)
∑

b,b′

Dγ

A,mAj,m′
Ai

(b∗)Dγ′

A′,mA′ j′,m′
A′ i

′(b
′∗)

×tγ
′′〈γ′′ → B,mB, iB |b†|γ′′ → C,mC , iC〉DC

mCm′
C
(σ)

×〈γ′′ → C,m′
C , iC |b′|γ′′ → B,m′

B , iB〉DB
m′

BmB
(σ−1)

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A
C

τ ′
Λ′
1
,Λ′

1,m′
Λ′
1

A′,mA′ ,A′,m′
A′

× 1

tγ
δγγ′δAA′

∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)DA
m′

Am′
A′

(σ)DA
mA′mA

(σ−1)δi′iδjj′

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′δAA′C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A
C

τ ′
Λ′
1
,Λ′

1,m′
Λ′
1

A′,mA′ ,A′,m′
A′

× 1

tγ
δγγ′

m!n!

dΛ1

∑

τ ′
Λ1

δii′δjj′C
τ ′
Λ1

,Λ1,mΛ1

A,m′
A,A,mA

C
τ ′
Λ1

,Λ1,m′
Λ′
1

A,m′
A′ ,A,mA′

= δΛΛ′δMΛM ′
Λ′

δΛ1Λ′
1
δττ ′δAA′δτΛ1

τ ′
Λ′
1

δii′δjj′m!n!dΛ1

1

tγ
δγγ′ . (B.8)

The second equality was obtained by performing the summation for b and b′ using the

formula derived in subsection B.3. To show the third equality, we have used
∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)DA
m′

Am′
A′

(σ)DA
mA′mA

(σ−1)

=
∑

σ∈Sm×Sn

DΛ1

mΛ1
m′

Λ′
1

(σ)DA
m′

Am′
A′

(σ)DA
mAmA′

(σ)

=
m!n!

dΛ1

∑

τ ′
Λ1

C
τ ′
Λ1

,Λ1,mΛ1

A,m′
A,A,mA

C
τ ′
Λ1

,Λ1,m′
Λ′
1

A,m′
A′ ,A,mA′

. (B.9)

This is a generalisation of (163) in [13]. The forth equality of (B.8) follows from the

orthogonality of Clebsch-Gordan coefficient [22]:

∑

mA,m′
A

C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A
C

τΛ′
1
,Λ′

1,mΛ′
1

A,mA,A,m′
A

= δτΛ1
,τΛ′

1
δΛ1,Λ′

1
δmΛ1

,mΛ′
1
. (B.10)
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B.3 A formula

We now calculate

∑

b∈BN (m,n)

〈γ → A,mA, iA|b∗|γ → B,mB, iB〉〈γ′ → C,mC , iC |b|γ′ → D,mD, iD〉. (B.11)

This can be worked out as

∑

b∈BN (m,n)

∑

I,J,K,L

B†
γI;A,mA,iA

BγJ ;B,mB ,iBDγ
IJ(b∗)B†

γ′K;C,mC ,iC
Bγ′L;D,mD,iDDγ′

KL(b)

=
1

tγ
δγγ′

∑

I,J

B†
γI;A,mA,iA

BγJ ;B,mB ,iBB†
γJ ;C,mC ,iC

BγI;D,mD,iD

=
1

tγ
δγγ′δADδBCδmAmD

δmBmC
δiAiDδiBiC . (B.12)

Some equations needed to show this are collected in the following.

• A representation matrix for an element b in the Brauer algebra can be denoted by

Dγ
IJ(b) = 〈γ, I|b|γ, j〉 (1 ≤ I, J ≤ dγ). dγ is the dimension of the Brauer algebra

relevant to the irreducible representation γ. The basis is complete:

dγ
∑

I=1

|γ, I〉〈γ, I| = 1. (B.13)

The orthogonality of the representation matrix is [42]

∑

b∈BN (m,n)

Dγ
IJ(b∗)Dγ′

KL(b) =
1

tγ
δJKδILδγγ′

. (B.14)

• We introduce the branching coefficient BγI;A,mA,i as

BγI;A,mA,i = 〈γ, I|γ → A,mA, i〉. (B.15)

The orthogonality of the branching coefficient can be derived as

∑

I

(Bγ,I;A,mA,iA)†Bγ,I;B,mB ,iB =
∑

I

〈γ → A,mA, iA|γ, I〉〈γ, I|γ → B,mB, iB〉

= δABδmAmB
δiAiB , (B.16)

where we have chosen an orthogonal basis

〈γ → B,mB , k|γ → A,mA, j〉 = δABδmAmB
δjk. (B.17)

C Two actions of the symmetric group

We introduced two Brauer algebras to label the orthogonal basis. One was responsible for

flavour indices and the other was for colour indices. They have the same sub-algebra, i.e.

the group algebra of the symmetric group Sm × Sn, but they allow the sub-algebra to act
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on the operator in different ways. The two different ways are correlated as we shall see

in (C.3). Because the orthogonal basis should respect it, the Clebsh-Gordan coefficient

should also satisfy a relation. We shall see that this is the case.

The symmetric group associated with colour indices act on the covariant operator as

σ
(

OΛ,MΛ,Λ1,mΛ1
,τ

)I

J
σ−1 =

(

OΛ,MΛ,Λ1,mΛ1
,τ

)σ(I)

σ(J)

=
∑

~a,~b

C~a,~b
Λ,MΛ,Λ1,mΛ1

,τ

(

O
~a,~b

)σ(I)

σ(J)
. (C.1)

On the other hand, the other symmetric group associated with flavour indices act on the

covariant operator as

DΛ1

mΛ1
m′

Λ1

(σ)OΛ,MΛ,Λ1,m′
Λ1

,τ =
∑

~a,~b

C
σ(~a),σ(~b)
Λ,MΛ,Λ1,mΛ1

,τ

(

O
~a,~b

)

=
∑

~a,~b

C~a,~b
Λ,MΛ,Λ1,mΛ1

,τ

(

O
σ−1(~a),σ−1(~b)

)

. (C.2)

These two actions are not independent because of

(

O
~a,~b

)σ(I)

σ(J)
=

(

O
σ(~a),σ(~b)

)I

J
. (C.3)

This means the following equation to the covariant operator

OΛ,MΛ,Λ1,mΛ1
,τ = DΛ1

mΛ1
m′

Λ1

(σ)σ
(

OΛ,MΛ,Λ1,m′
Λ1

,τ

)

σ−1. (C.4)

Substituting this in the gauge invariant operator (3.12), we obtain

Oγ,A,ij,τΛ1
Λ,MΛ,Λ1,τ = C

τΛ1
,Λ1,mΛ1

A,mA,A,m′
A

∑

b

Dγ

A,mAi,m′
Aj

(b∗)DΛ1

mΛ1
m′

Λ1

(σ)trm,n(bσOΛ,MΛ,Λ1,m′
Λ1

,τσ
−1)

= C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

b

Dγ

A,mAi,m′
Aj

((σbσ−1)∗)DΛ1

mΛ1
m′

Λ1

(σ)trm,n(bOΛ,MΛ,Λ1,m′
Λ1

,τ ).

This σ-dependence can be shown to vanish as expected from the consistency of this oper-

ator. Using11

(σbσ−1)∗ = σb∗σ−1, (C.5)

we can show that the σ-dependence disappears as

C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

b

Dγ

A,mAi,m′
Aj

((σbσ−1)∗)DΛ1

mΛ1
m′

Λ1

(σ)

= C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A

∑

b

DA
mAm′′

A
(σ)Dγ

A,m′′
Ai,m′′′

A j
(b∗)DA

m′′′
A m′

A
(σ−1)DΛ1

mΛ1
m′

Λ1

(σ)

= C
τΛ1

,Λ1,m′′
Λ1

A,m′′
A,A,m′′′

A
DΛ1

m′′
Λ1

mΛ1
(σ−1)DΛ1

mΛ1
m′

Λ1

(σ)
∑

b

Dγ

A,m′′
Ai,m′′′

A j
(b∗)

11This comes from the expression of b
∗ in (3.27) of [1]. with the assist of Σ(σbσ

−1) = σΣ(b)σ−1, where

Σ(σbτ ) = σΣ(b)τ is not true.
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= C
τΛ1

,Λ1,m′
Λ1

A,m′′
A,A,m′′′

A

∑

b

Dγ

A,m′′
Ai,m′′′

A j
(b∗). (C.6)

The final step comes from the following equation

C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A
DA

mAm′′
A
(σ)DA

m′′′
A m′

A
(σ−1)

= C
τΛ1

,Λ1,mΛ1

A,mA,A,m′
A
DA

m′′
AmA

(σ−1)DA
m′′′

A m′
A
(σ−1)

= C
τΛ1

,Λ1,m′′
Λ1

A,m′′
A,A,m′′′

A
DΛ1

m′′
Λ1

mΛ1
(σ−1). (C.7)

See appendix A in [13] for the derivation.
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